Note to Readers: *EHP* strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in *EHP* articles may not conform to 508 standards due to the complexity of the information being presented. If you need assistance accessing journal content, please contact ehp508@niehs.nih.gov. Our staff will work with you to assess and meet your accessibility needs within 3 working days. # **Supplemental Material** Understanding the Radioactive Ingrowth and Decay of Naturally Occurring Radioactive Materials in the Environment: An Analysis of Produced Fluids from the Marcellus Shale Andrew W. Nelson, Eric S. Eitrheim, Andrew W. Knight, Dustin May, Marinea A. Mehrhoff, Robert Shannon, Robert Litman, William C. Burnett, Tori Z. Forbes, and Michael K. Schultz #### **Table of Contents** **Figure S1.** Schematic of rapid separation of U, Th and Po. **Figure S2.** Representative alpha spectra. Panels **(A-D)** are representative spectra collected by *Method 1: TRU-Ag-TEVA*: **(A)** polonium fraction without ²⁰⁹Po tracer, **(B)** polonium fraction with ²⁰⁹Po tracer, **(C)** thorium fraction without ²³⁰Th tracer, **(D)** thorium fraction with ²³⁰Th tracer. Panels **(E-F)** are representative spectra collected by *Method 2: TRU-TEVA*: **(E)** uranium fraction with ²³²U tracer linear scale, **(F)** uranium fraction with ²³²U tracer log scale. Expanded methods Polonium-210 ingrowth Thorium-228 ingrowth Uranium absent References Figure S1. Schematic of rapid separation of U, Th and Po. **Figure S2.** Representative alpha spectra. Panels **(A-D)** are representative spectra collected by *Method 1: TRU-Ag-TEVA*: **(A)** polonium fraction without ²⁰⁹Po tracer, **(B)** polonium fraction with ²⁰⁹Po tracer, **(C)** thorium fraction without ²³⁰Th tracer, **(D)** thorium fraction with ²³⁰Th tracer. Panels **(E-F)** are representative spectra collected by *Method 2: TRU-TEVA*: **(E)** uranium fraction with ²³²U tracer linear scale, **(F)** uranium fraction with ²³²U tracer log scale. # **Expanded methods** # Polonium-210 ingrowth The long-lived 238 U ($t_{1/2} = 4.5 \times 10^9$ years) in the formation supports the activity of 226 Ra, which then supports ^{210}Pb ($t_{1/2}$ = 22.3 years) and ^{210}Po . Thus, these elements should be present (and of equal activity) in the Marcellus Shale. Given that ²²⁶Ra was 670 Bq/L, we expected similar activities of ²²⁶Ra decay products. Yet, when we directly measured ²¹⁰Pb by gamma spectrometry, its activity was below the critical level (Currie Limit, 14 Bq/L). We acknowledge this critical level may be unacceptably high for many applications. The high critical level is due to several reasons, first, the relatively high activity of Ra isotopes and decay products create a large Compton scatter, which buries the low energy peak of ²¹⁰Pb (46 keV, 4%). Emission data for ²¹⁰Pb were extracted from the NuDat 2 Database [National Nuclear Data Center (NNDC) 2013]. Secondly, the high levels of ions in produced fluids attenuate gamma emissions thereby further reducing counting efficiency of the low intensity peak (Landsberger et al. 2013). Importantly, ²¹⁰Pb was *not in secular equilibrium* with its parent, ²²⁶Ra, which led us to investigate the levels of ²¹⁰Po (the final radioactive species in the ²³⁸U decay series). Similarly, experiments indicated ²¹⁰Po was not in secular equilibrium with either ²²⁶Ra or ²¹⁰Pb. When we measured ²¹⁰Po levels ~2 months later, we noticed levels had increased approximately 450%. This ingrowth, follows the theoretical Bateman equation with the assumption that all decay products of ²²⁶Ra are initially absent (Figure 2A). ## Thorium-228 ingrowth Initial experiments indicated that levels of thorium isotopes (²³²Th, ²³⁰Th, ²²⁸Th) were negligible. Yet, over time the levels of ²²⁸Th steadily increased. In this sample, ²²⁸Th is supported by ²²⁸Ra and its *ingrowth* can be modeled on a *transient equilibrium* model (Figure 2B). Given that Th is generally insoluble in environmental waters (Kumar et al. 2013) and in produced fluids Ra is soluble, the transient equilibrium model of 228 Ra/ 228 Th has the potential serve as a 'forensic' tool to determine when samples removed from the Marcellus Shale (for up to ~ 10 years (Schmidt and Cochran 2010)). The 228 Ra/ 228 Th system provides key advantages over other tools including (1) the chemical disequilibrium introduced by the poor solubility of Th (2) the relative ease of measuring 228 Th and 228 Ra (via 228 Ac) and (3) the relatively short half-live of 228 Th ($t_{1/2}$ = 1.9 years) that allows for a chronometer that may be used within a matter of weeks. #### Uranium absent In addition to Ra decay products, we investigated levels of 238 U, 235 U, and 234 U in the produced fluids. Although U is often analyzed by mass spectrometry, the method we developed provides the advantage of simultaneous determinations of multiple U, Po, and Th isotopes. Given the high level of 226 Ra (238 U decay product), we were surprised to find levels of U isotopes less than 5 mBq/L (n=4), which is nearly 5-log lower than the activity of 226 Ra (Figure 2). There are very few peer-reviewed reports of U activities in produced fluids; however, the notably lower levels of U compared to 226 Ra is similar to data from the PA Department of Environmental Protection (Barbot et al. 2013). Our analysis indicates there is a slight enrichment of 234 U compared to 238 U (234 U/ 238 U = 2.3), which is common in groundwater and indicative of daughter recoil (Osmond *et al.* 1983). ## References Barbot E, Vidic NS, Gregory KB, Vidic RD. 2013. Spatial and temporal correlation of water quality parameters of produced waters from Devonian-age shale following hydraulic fracturing. Environ Sci Technol 47:2562-2569. Kumar A, Singhal R, Rout S, Narayanan U, Karpe R, Ravi P. 2013. Adsorption and kinetic behavior of uranium and thorium in seawater-sediment system. J Radioanal Nucl Chem 295:649-656. Landsberger S, Brabec C, Canion B, Hashem J, Lu C, Millsap D, et al. 2013. Determination of ²²⁶Ra, ²²⁸Ra and ²¹⁰Pb in NORM products from oil and gas exploration: Problems in activity underestimation due to the presence of metals and self-absorption of photons. J Environ Radioact 125:23-26. NNDC (National Nuclear Data Center). 2013. NuDat 2 database. Available: http://www.nndc.bnl.gov/nudat2/ [accessed 17 February 2015]. Osmond J, Cowart J, Ivanovich M. 1983. Uranium isotopic disequilibrium in ground water as an indicator of anomalies. Intl J Appl Radiat and Isot 34:283-308. Schmidt S, Cochran J. 2010. Radium and radium-daughter nuclides in carbonates: a brief overview of strategies for determining chronologies. J Environ Radioact 101:530-537.